
Federated Learning in Side-Channel Analysis

Huanyu Wang 1 Elena Dubrova 1

Abstract

Recently introduced federated learning is an at-
tractive framework for the distributed training of
deep learning models with thousands of partici-
pants. However, it can potentially be used with
malicious intent. For example, adversaries can
use their smartphones to jointly train a classifier
for extracting secret keys from the smartphones’
SIM cards without sharing their side-channel mea-
surements with each other. With federated learn-
ing, each participant might be able to create a
strong model in the absence of sufficient training
data. Furthermore, they preserve their anonymity.
In this paper, we investigate this new attack vec-
tor in the context of side-channel attacks. We
compare the federated learning, which aggregates
model updates submitted by N participants, with
two other aggregating approaches: (1) training on
combined side-channel data from N devices, and
(2) using an ensemble of N individually trained
models. Our first experiments on 8-bit Atmel
ATxmega128D4 microcontroller implementation
of AES show that federated learning is capable of
outperforming the other approaches.

1. Introduction
Federated Learning (FL) is a new paradigm in ma-
chine learning that can help meet regulatory requirements
(GDPR (Voigt & Von dem Bussche, 2017), HIPAA (Atchin-
son & Fox, 1997)) and mitigate privacy concerns while tak-
ing advantage of massive distributed data (Konečnỳ et al.,
2016b;a; McMahan et al., 2016). FL allows its partici-
pants to collaboratively train a global model without sharing
participant’s local training data. At every communication
round, each participant trains a local model based on his/her
training data and submits the model updates to the server.
The server employs a secure aggregation (Bonawitz et al.,

1School of Electrical Engineering and Computer Science, KTH
Royal Institute of Technology, Stockholm, Sweden. Correspon-
dence to: <huanyu@kth.se>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

2017) to build a global model by averaging the local mod-
els’ weights. Motivating applications for FL include image
classifiers for self-driving cars, keyboard next-word predic-
tors, and personalized product recommendation services (Li
et al., 2019).

However, as any great scientific discovery, FL can poten-
tially be used with malicious intent. Since FL preserves
not only training data confidentiality, but also participant’s
anonymity, its setting is very appealing to adversaries. Fur-
thermore, an adversary who does not have enough training
data might still be able to create a strong deep-learning
model by training in a FL framework. For example, adver-
saries can use their smartphones to jointly train a classifier
for extracting secret keys from the smartphones’ SIM cards
without sharing their local side-channel measurements with
each other. At each round, every participant independently
trains a local model update based on traces captured from
his/her profiling device and uploads it to the aggregator,
where the submitted updates are combined to construct a
global model. The aggregator can be either a participant, or
a third party.

In this paper, we investigate this new attack vector in the
context of Deep-Learning Side Channel Attacks (DL-SCAs).
DL-SCA are one of the most powerful attacks against im-
plementations of cryptographic algorithms at present (Perin
et al., 2018). During the execution of a cryptographic algo-
rithm, physical implementations tend to leak side-channel
information which is related to the secret key. An adver-
sary first trains a deep-learning model on power traces cap-
tured from profiling devices which he/she controls, and then
applies the trained model to recover the key of a victim
device. Using more than one device for profiling (called
multi-source training), is known to reduce the negative ef-
fect of inter-chip variation, which is prominent in advanced
technologies, and help generalization (Wang et al., 2019;
Das et al., 2019; Wang et al., 2020).

Another known technique for reducing generalization er-
ror in machine learning is bootstrap aggregating, or bag-
ging (Breiman, 1996). In bagging, several different, sepa-
rately trained models are used in an ensemble to vote on
the output results. Since different models usually do not
make the same errors on the test set, on average, an en-
semble of N models is expected to perform better than its

Federated Learning in Side-Channel Analysis

members (Goodfellow et al., 2016). Bagging has been suc-
cessfully applied to power analysis of hardware implemen-
tations of Advanced Encryption Standard (AES) (Wang &
Dubrova, 2020). The attack presented in (Wang & Dubrova,
2020) uses an ensemble of three CNN models trained on
different attack points.

While it is obvious that a DL-SCA in FL framework will out-
perform a DL-SCA based a single classifier trained on a sin-
gle profiling device, the outcome of a competition between
FL (model-level aggregation), bagging (output-level aggre-
gation), and multi-source training (data-level aggregation)
methods is not evident. We present such an evaluation in
this paper. We apply FL, bagging, and multi-source training
aggregation methods to power analysis of a microcontroller
implementation of AES. Our first experiments show that FL
is capable of outperforming the other two approaches.

The rest of the paper is organized as follows. Section 2
gives a background on deep-learning side-channel attacks.
Section 3 describes model-level, output-data and data-level
aggregation methods in the side-channel analysis context.
Section 4 presents the experimental setup. Section 5 shows
how local models are trained. Section 6 summarizes the
evaluation results. Section 7 concludes this paper and dis-
cusses open problems.

2. Deep Learning Side-Channel Attacks
Side-channel attacks were pioneered by Paul Kocher in his
seminal paper on timing analysis (Kocher, 1996) where he
has shown that non-constant running time of a cipher can
leak information about its key. Kocher has also introduced
power analysis (Kocher et al., 1999) which exploits the fact
that circuits typically consume differing amounts of power
based on their input data. The power consumption remains
one of the most successfully exploited side-channels today.
We focus on power analysis in this paper.

The target of a side-channel attack is to recover an n-bit
key k ∈ K, where K is the set of all possible keys. To
recover the key, the attacker uses of a set of known input data
(e.g. the plaintext) and a set of the physical measurements
(e.g. power consumption). Usually a divide-and-conquer
strategy is used in which the key k is divided into m-bit
parts ki, called subkeys, and the subkeys ki are recovered
independently, for i ∈ {1, 2, . . . , n

m}. Typically m = 8.

Deep learning can be used in side-channel analysis in two
settings: profiling and non-profiling. Profiling attacks (Mar-
tinasek et al., 2015) first learn a leakage profile of the cryp-
tographic algorithm under attack, and then attack. Non-
profiling attacks (Timon, 2018) attack directly, as the tradi-
tional Differential Power Analysis (Kocher et al., 1999) or
Correlation Power Analysis (CPA) (Brier et al., 2004). In
this paper, we focus on profiling attacks.

2.1. Assumptions

Profiling side-channel attacks assume that:

1. The attacker has at least one device, called the profil-
ing device, which is similar to the device under attack
and runs the same implementation of the same crypto-
graphic algorithm.

2. The attacker has a full control over the profiling device
(can apply chosen plaintext, program chosen keys, and
do physical measurements).

3. The attacker has a physical access to the victim de-
vice to measure some side-channel signals during the
execution of the cryptographic algorithm.

In addition, in this paper we assume that only a single power
trace from a victim device is available to the attacker. Single-
trace attacks are particularly threatening because they can
recover the key even if the key if changed for every session.

2.2. Attack Stages

A profiling deep-learning side-channel attack is done in two
stages.

At the profiling stage, the selected type of deep-learning
model is trained to learn a leakage profile of the crypto-
graphic algorithm under attack for all possible values of the
sensitive variable. The sensitive variable is typically a sub-
key. The training is done using a large set of side-channel
data captured from profiling device(s) which are labeled
according to the selected leakage model.

At the attack stage, the trained model is used to classify the
side-channel data from a victim device.

3. Aggregation methods
This section describes model-, output- and data-level aggre-
gation methods in the side-channel analysis context.

3.1. Model-level aggregation

Figure 1(a) illustrates the model-level aggregation. There
are N participants (clients) jointly constructing a federated
deep-learning model. Each client i has ni private data sam-
ples from his/her profiling device, for i ∈ {1, . . . , N}. The
total number of training data samples ofN clients is denoted
by n, with n =

∑N
i=1 ni.

At the beginning of the training process, a typical model
structure is initialized by an aggregator (server) and sent
to each client. At each communication round t, a random
fraction ηt ∈ [0, 1] ofN clients is selected by the aggregator
to independently update local models based on their private

Federated Learning in Side-Channel Analysis

(a) Model-level aggregation (FL) (b) Output-level aggregation (c) Data-level aggregation

Figure 1. Model-, output- and data-level aggregation in the side-channel analysis context.

data and upload the updates to the aggregator. In our experi-
ment, we set ηt = 1, which means that all clients contribute
to the global model in each communication round.

For each client i, local updates are typically done using
Stochastic Gradient Descent (SGD) taken on the private
data the client i based on the weights ωt

0 of the shared
global model:

ωt+1
i = ωt

0 − α∇φ(ωt
i) (1)

where α is the learning rate,∇φ is gradient of the classifica-
tion loss φ, and ωt

i are weights of current local model of the
client i.

A typical aggregation approach of federated learning is av-
eraging. The aggregator computes the weights ωt+1

0 of the
global model by averaging the weights of submitted local
models:

ωt+1
0 =

N∑
i=1

ni
n
ωt+1
i (2)

At the end of communication round t, the aggregator sends
the global model with the weights ωt+1

0 back to each client.

All clients can use the global model to classify the data
samples from a victim device.

3.2. Output-level aggregation

Figure 1(a) shows the output-level aggregation approach
inspired by bagging (Breiman, 1996) meta-algorithm which
is a type of ensemble learning. N different classifiers are
trained and their score vectors are combined. In this way, a
stronger classifier can potentially be created from several
weaker ones. Bagging may help avoid overfitting and reduce
variance (Polikar, 2012). In output-level aggregation, N
participants train their local models independently from

each other. Each participant i uses ni private data samples
from his/her profiling device to train the model Mi, for
i ∈ {1, . . . , N}. After training, all participants submit their
trained models to the aggregator. The aggregator creates
the ensemble model MO from M1,M2,M3 by aggregating
the outputs of M1,M2,M3 and returns MO back to each
participant.

All clients can use MO to classify the data samples from a
victim device.

3.3. Data-level aggregation

Figure 1(c) illustrates the data-level aggregation. There are
N participants. Each participant i uploads ni private data
samples from from his/her profiling device to the aggregator,
for i ∈ {1, . . . , N}. The aggregator combines the local data
into the global data set with n =

∑N
i=1 ni samples and

trains the model MD. After training, the aggregator sends
the model MD to each participant.

All clients can use MD to classify the data samples from a
victim device.

4. Experimental Setup
The section describes our experimental setup.

4.1. Equipment for Power Analysis

The equipment we use for power analysis is shown in Fig-
ure 2. It consists of the ChipWhisperer-Lite board, the
CW308 UFO mother board and nine CW308T-XMEGA
target boards. In the sequel, we refer to these boards as
D1, D2, . . . , D9.

The ChipWhisperer is a hardware security evaluation

Federated Learning in Side-Channel Analysis

Figure 2. Equipment for power analysis.

toolkit based on a low-cost open hardware platform and
an open source software (NewAE Technology Inc.). The
ChipWhisperer-Lite can be used to measure power consump-
tion with the maximum sampling rate of 105 MS/sec.

The CW308 UFO board is a generic platform for evaluating
multiple targets (CW308 UFO Target). The target board is
plugged in a dedicated U connector.

The CW308T-XMEGA target board contains an 8-bit
ATxmega128D4 microcontroller. We programmed the mi-
crocontrollers to the same implementation of AES-128 en-
cryption algorithm in Electronic codebook (ECB) mode of
operation.

4.2. Power Trace Acquisition

We used D1, D2, D3 as profiling devices and D4 − D9

as victim devices. To collect training data, 300K power
traces were captured from each profiling device during the
execution of AES for randomly selected plaintexts and keys.
To collect testing data, 1K power traces were captured from
each target device during the execution of AES for randomly
selected plaintexts and fixed keys.

5. Training of Local Models
In this section we describe how local models are trained.

5.1. Choice of Neural Network Type

Previous work investigated which type of deep neural net-
works is suitable for various side-channel analysis scenarios.
For example, Convolutional Neural Networks (CNNs) can
overcome trace misalignment and jitter-based countermea-
sure (Cagli et al., 2017; Perin et al., 2018; Gilmore et al.,

Figure 3. Segment of a power trace from an 8-bit ATxmega128D4
microcontroller representing 16 executions of S-box.

2015). If traces are synchronized and there is no need to han-
dle noise, Multiple Layer Perception (MLP) seems to be a
more suitable choice. MLPs are shown successful in extract-
ing keys from software (Das et al., 2019; Wang et al., 2019;
Benadjila et al., 2018; Martinasek et al., 2016; Maghrebi,
2019) and hardware (Kubota et al., 2019) implementations
of AES.

In our experiments, we use an unprotected software imple-
mentation of AES-128 on an 8-bit microcontroller. In a
software implementation instructions are executed sequen-
tially, thus signal-to-noise ratio is much higher compared to
a hardware implementation. Furthermore, we capture traces
using ChipWhisperer which assures perfect trace alignment.
For this reason, we use MLPs as a neural network type.

5.2. Training Process

Given a set of power traces {T1, . . . , Tn}, Ti ∈ Rm, where
m is the number of data points in a trace, and a set of classi-
fication classes C, the objective is classify traces according
their labels l(Ti) ∈ C.

Fig. 3 shows the segment of a power trace from an 8-bit
ATxmega128D4 microcontroller representing 16 executions
of S-box in the 1st encryption round. The S-box is a 8× 8
invertible mapping. AES-128 executes S-box 16 times in
each round. One can see the distinct shape of each S-box
execution. For all models, we use 8-bit values of the S-box
output in the 1st round as labels (identity power model1), i.e.
C = {0, 1, . . . , 255}.

A neural network can be viewed as a function M : Rm →
I|C|, where I := {x ∈ R | 0 ≤ x ≤ 1}, which maps a trace
Ti into a score vector Si =M(Ti) ∈ I|C| whose elements
si,j represent the probability of the label with value j ∈ C.

We use categorical cross-entropy loss to quantify the clas-
sification error of the network. To minimize the loss, the
gradient of the loss with respect the score Si is computed

1Identity power model assumes that the power consumption is
proportional to the value of the data processed at the attack point.

Federated Learning in Side-Channel Analysis

Layer Type Output Shape Parameter #
Input (Dense) (None, 200) 19400
Dense 1 (None, 200) 40200
Dense 2 (None, 200) 40200
Dense 3 (None, 200) 40200
Dense 4 (None, 200) 40200
Output (Dense) (None, 256) 51456
Total Parameters: 231,656

Table 1. Local model’s architecture summary.

and back-propagated through the network to tune its internal
parameters according to the RMSprop optimizer, which is
one of the advanced adaptations SGD algorithm (Robbins
& Monro, 1951). This is repeated for a chosen number of
iterations called epochs.

Once the network is trained, to classify a trace Ti whose
label l(Ti) is unknown, we determine the most likely label l̃
among all |C| candidate labels as

l̃ = argmax
i∈|C|

Si.

If l̃ = l(Ti), the classification is successful.

5.3. Choice of Neural Network Architecture

The architecture of MLP networks used in our experiments
is shown in Table 1. The network contains an input layer,
four hidden layers and an output layer. The input size 96 cor-
responds to the number data samples in one S-box execution.
The output size is |C| = 256.

6. Evaluation Results
In this section, we apply model-, output- and data-level
aggregation methods to power analysis of AES-128 and
compare their results.

In all experiments, we simulate a scenario with N = 3
participants having the same number of training traces.

6.1. Results of model-level aggregation

In this experiment, three participants jointly create a global
MLP model, MM , each using ni = 300K traces from Di

for training his/her local model, for i ∈ {1, 2, 3}. For all
local models, we used RMSprop with a learning rate α =
0.0001 and trained for 40 epochs with local minimum batch
size 128. The training is carried out for 20 communication
rounds. After each round, the aggregator sends the global
model back to each participant and the global model is
further trained on local training sets.

Since each of the participants uses the same number of
training traces for updating the local model, the weights
ωt+1
0 of the global model are updated based on the weights

Figure 4. Probability of recovering a subkey from a single trace
from devices D4 −D6 using the global model MM (average for
1,000 tests).

ωt+1
i , i ∈ {1, 2, 3}, of local models as:

ωt+1
0 =

1

3
(ωt+1

1 + ωt+1
2 + ωt+1

3).

After each round, we test the resulting global model on a
randomly selected single trace Ti from each victim device
Dj , for j ∈ {4, 5, . . . , 9}. If the correct subkey value has
the highest probability in the score vector Si = MM (Ti),
the attack is successful. Otherwise, the attack fails. Figure 4
shows the average probability of recovering a subkey from
a single trace from devices D4 − D9 for 1,000 tests for
different numbers of rounds.

From Figure 4, we can see that the federated model built
in the 17th communication round has the highest average
success probability over all rounds. The 2nd column in
Table 2 shows the probability of recovering a subkey from a
single trace using this model. We can see that the average is
79.7%.

6.2. Results of output-level aggregation

In this experiment, three participants train their local MLP
models independently from each other. Each participant i
trains the modelMi on ni = 300K traces fromDi with 60K
traces set aside for validation, for i ∈ {1, 2, 3}. For all mod-
els, we used RMSprop with a learning rate α = 0.0001 and
trained for 70 epochs with batch size 128. The score vector
of the ensemble model MO is computed by multiplying
score vectors Si = Mj(Ti) for all j ∈ {1, 2, 3}. Such an
approach is known to work well for power analysis of hard-
ware implementations of AES (Wang & Dubrova, 2020).
Note, however, that we used the same attack point (S-box
output in the 1st round) to create labels for models M1,M2

Federated Learning in Side-Channel Analysis

Table 2. Probability of recovering a subkey from a single trace
using aggregated models (average for 1,000 tests).

Aggregation method
Device Model-level Output-level Data-level

MM MO MD

D4 89.8% 70.0% 71.3%
D5 91.2% 60.6% 79.4%
D6 91.4% 62.6% 65.3%
D7 35.5% 28.7% 41.5%
D8 88.5% 56.3% 49.6%
D9 69.6% 62.7% 70.0%

average 79.7% 66.4% 70.7%

Table 3. Probability of recovering a subkey from a single trace
using local models (average for 1,000 tests).

Device M1 M2 M3

D4 40.3% 31.9% 32.7%
D5 44.6% 40.7% 15.6%
D6 34.3% 28.6% 46.7%
D7 12.8% 10.2% 65.2%
D8 22.5% 28.8% 45.8%
D9 55.7% 66.2% 12.1%

average 35.0% 34.4% 36.4%

and M3. In (Wang & Dubrova, 2020), a different attack
point is used for each model. This might have negatively
affected the ensemble’s results.

The 3rd column of Table 2 shows the probability of recover-
ing a subkey from a single trace using MO. For a compari-
son, Table 3 also shows the results for local models M1,M2

and M3. One see that that success probabilities of the mod-
els M1, M2 and M3 vary a lot for different devices. This is
because different pairs of devices have different amounts of
variability. Some devices are less different, some are more
different. For example, on one hand, models M1 and M2

can recover a subkey from a single power trace from D5

in 44.6% and 40.7% of cases, respectively. Contrary, for
model M3, the subkey recovery rate from D5 is only 15.6%.
ProbablyD1 andD2 are less different fromD5 thanD3. On
the other hand, M3 significantly outperforms M1 and M2

on D7 (65.3% vs 12.8% and 10.2%, respectively). Probably
D3 is similar to D7, while D1 and D2 are very different
from D7. High dissimilarly of D1 and D2 from D7 might
be the reason why the global model MM in performs so
poorly on D7 in the federated learning case. From Table 3
we can also conclude that D3 is very different from D9,
which explains the worse result of MM for D9 as compared
to the results of MM for D4−D6 and D8.

Using an ensemble improves generalization ability of in-
dividual models (Sh9, 1999), as we can see from the 3rd
column of Table 2. The average probability of recovering a
subkey from a single trace using MO is 66.4%.

6.3. Results of data-level aggregation

In this experiment, the participants 1, 2 and 3 upload their
sets of 300K traces from D1, D2 and D3, respectively, to
the aggregator. The aggregator combines theses sets into
a training set of size 900K and sets aside 270K traces for
validation. Then, the aggregator trains the MLP model MD.
We used RMSprop with a learning rate α = 0.0001 and
trained for 40 epochs with batch size 128. The 4th column
of Table 2 shows the probability of recovering a subkey
from a single trace using MD. The average is 70.7%.

7. Conclusion
We compared the federated learning approach to two other
aggregating approaches - on data and on output levels. Our
first results show that federated learning is capable of out-
performing the other approaches. This is quite surprising.
Intuitively, it should be more difficult to train a global model
in a federated learning framework due to challenges related
to training on distributed data while keeping these data pri-
vate. Moves due to averaging of weights of local models
are more random compared to the moves due to the SGD.
This randomness seems beneficial for the optimization of
the objective function in the case of power analysis, when
generalization is particularly important.

We plan to further investigates this phenomena by training
new models using other combinations of profiling devices.

8. Acknowledgements
This work was supported in part by the research grant 2018-
04482 from the Swedish Research Council and by the Vin-
nova Competence Center for Trustworthy Edge Computing
Systems and Applications at KTH Royal Institute of Tech-
nology.

References
In Sharkey, A. (ed.), Combining Artificial Neural Nets: En-

semble and Modular Multi-Net Systems, New York, 1999.
Springer-Verlag.

Atchinson, B. K. and Fox, D. M. From the field: The politics
of the health insurance portability and accountability act.
Health affairs, 16(3):146–150, 1997.

Benadjila, R., Prouff, E., Strullu, R., Cagli, E., and Dumas,
C. Study of deep learning techniques for side-channel
analysis and introduction to ascad database. ANSSI,
France & CEA, LETI, MINATEC Campus, France, 22:
2018, 2018. URL https://eprint.iacr.org/
2018/053.pdf.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,

https://eprint.iacr.org/2018/053.pdf
https://eprint.iacr.org/2018/053.pdf

Federated Learning in Side-Channel Analysis

McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 1175–1191, 2017.

Breiman, L. Bagging predictors. Machine learning, 24(2):
123–140, 1996.

Brier, E., Clavier, C., and Olivier, F. Correlation power anal-
ysis with a leakage model. In Joye, M. and Quisquater,
J.-J. (eds.), Cryptographic Hardware and Embedded Sys-
tems - CHES 2004, pp. 16–29, 2004. ISBN 978-3-540-
28632-5.

Cagli, E., Dumas, C., and Prouff, E. Convolutional neu-
ral networks with data augmentation against jitter-based
countermeasures. In International Conference on Cryp-
tographic Hardware and Embedded Systems, pp. 45–68.
Springer, 2017.

CW308 UFO Target. https://wiki.newae.com/
CW308_UFO_Target.

Das, D., Golder, A., Danial, J., Ghosh, S., Raychowdhury,
A., and Sen, S. X-deepsca: Cross-device deep learning
side channel attack. In Proceedings of the 56th Annual
Design Automation Conference 2019, pp. 1–6, 2019.

Gilmore, R., Hanley, N., and O’Neill, M. Neural network
based attack on a masked implementation of AES. In
2015 IEEE International Symposium on Hardware Ori-
ented Security and Trust (HOST), pp. 106–111. IEEE,
2015.

Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Kocher, P., Jaffe, J., and Jun, B. Differential power analysis.
pp. 388–397. Springer-Verlag, 1999.

Kocher, P. C. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In Proc. of
the 16th Annual Int. Cryptology Conf. on Advances in
Cryptology, pp. 104–113, 1996. ISBN 3-540-61512-1.

Konečnỳ, J., McMahan, H. B., Ramage, D., and Richtárik, P.
Federated optimization: Distributed machine learning for
on-device intelligence. arXiv preprint arXiv:1610.02527,
2016a.

Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P.,
Suresh, A. T., and Bacon, D. Federated learning: Strate-
gies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016b.

Kubota, T., Yoshida, K., Shiozaki, M., and Fujino, T. Deep
learning side-channel attack against hardware implemen-
tations of AES. In 2019 22nd Euromicro Conference on
Digital System Design (DSD), pp. 261–268. IEEE, 2019.

Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., and He, B. A
survey on federated learning systems: Vision, hype and
reality for data privacy and protection, 2019.

Maghrebi, H. Deep learning based side channel attacks
in practice. Technical report, IACR Cryptology ePrint
Archive 2019, 578, 2019.

Martinasek, Z., Malina, L., and Trasy, K. Profiling power
analysis attack based on multi-layer perceptron network.
In Computational Problems in Science and Engineering,
pp. 317–339. Springer, 2015.

Martinasek, Z., Dzurenda, P., and Malina, L. Profiling power
analysis attack based on mlp in dpa contest v4. 2. In 2016
39th International Conference on Telecommunications
and Signal Processing (TSP), pp. 223–226. IEEE, 2016.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., et al.
Communication-efficient learning of deep networks from
decentralized data. arXiv preprint arXiv:1602.05629,
2016.

NewAE Technology Inc. Chipwhisperer. https://
newae.com/tools/chipwhisperer.

Perin, G., Ege, B., and van Woudenberg, J. Lowering the bar:
Deep learning for side-channel analysis (white-paper). In
Proc. BlackHat, pp. 1–15, 2018.

Polikar, R. Ensemble learning. In Ensemble machine learn-
ing, pp. 1–34. Springer, 2012.

Robbins, H. and Monro, S. A stochastic approximation
method. Ann. Math. Statist., 22:400–407, 1951.

Timon, B. Non-profiled deep learning-based side-channel
attacks. IACR Cryptology ePrint Archive, 2018:196,
2018.

Voigt, P. and Von dem Bussche, A. The eu general data
protection regulation (gdpr). A Practical Guide, 1st Ed.,
Cham: Springer International Publishing, 2017.

Wang, H. and Dubrova, E. Tandem deep learning side-
channel attack against FPGA implementation of AES.
arXiv preprint arXiv, 2020.

Wang, H., Brisfors, M., Forsmark, S., and Dubrova, E.
How diversity affects deep-learning side-channel attacks.
In 2019 IEEE Nordic Circuits and Systems Conference
(NORCAS): NORCHIP and International Symposium of
System-on-Chip (SoC), pp. 1–7. IEEE, 2019.

Wang, H., Forsmark, S., Brisfors, M., and Dubrova, E.
Multi-source training deep learning side-channel attacks.
IEEE 50th International Symposium on Multiple-Valued
Logic, 2020.

https://wiki.newae.com/CW308_UFO_Target
https://wiki.newae.com/CW308_UFO_Target
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://newae.com/tools/chipwhisperer
https://newae.com/tools/chipwhisperer

